The Effect of Elevated Ozone Concentrations with Varying Shading on Dry Matter Loss in a Winter Wheat-Producing Region in China

نویسندگان

  • Jingxin Xu
  • Youfei Zheng
  • Yuhong He
  • Rongjun Wu
  • Boru Mai
  • Hanqing Kang
  • Juan A. Añel
چکیده

Surface-level ozone pollution causes crop production loss by directly reducing healthy green leaf area available for carbon fixation. Ozone and its precursors also affect crop photosynthesis indirectly by decreasing solar irradiance. Pollutants are reported to have become even more severe in Eastern China over the last ten years. In this study, we investigated the effect of a combination of elevated ozone concentrations and reduced solar irradiance on a popular winter wheat Yangmai13 (Triticum aestivum L.) at field and regional levels in China. Winter wheat was grown in artificial shading and open-top-chamber environments. Treatment 1 (T1, i.e., 60% shading with an enhanced ozone of 100±9 ppb), Treatment 2 (T2, i.e., 20% shading with an enhanced ozone of 100±9 ppb), and Control Check Treatment (CK, i.e., no shading with an enhanced ozone of 100±9 ppb), with two plots under each, were established to investigate the response of winter wheat under elevated ozone concentrations and varying solar irradiance. At the field level, linear temporal relationships between dry matter loss and cumulative stomatal ozone uptake were first established through a parameterized stomatal-flux model. At the regional level, ozone concentrations and meteorological variables, including solar irradiance, were simulated using the WRF-CMAQ model (i.e., a meteorology and air quality modeling system). These variables were then used to estimate cumulative stomatal ozone uptake for the four major winter wheat-growing provinces. The regional-level cumulative ozone uptake was then used as the independent variable in field data-based regression models to predict dry matter loss over space and time. Field-level results showed that over 85% (T1: R(2) = 0.85 & T2: R(2) = 0.89) of variation in dry matter loss was explained by cumulative ozone uptake. Dry matter was reduced by 3.8% in T1 and 2.2% in T2 for each mmol O3·m(-2) of cumulative ozone uptake. At the regional level, dry matter loss in winter wheat would reach 50% under elevated ozone concentrations and reduced solar irradiance as determined in T1, and 30% under conditions as determined in T2. Results from this study suggest that a combination of elevated ozone concentrations and reduced solar irradiance could result in substantial dry matter loss in the Chinese wheat-growing regions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of sowing time and rate on crop growth and radiation use efficiency of winter wheat in the North China Plain

Crop depends on its canopy to intercept solar radiation to drive both assimilation and water, nutrient absorption for its growth. Field experiments, involving three sowing time and three sowing rate, were conducted at Luancheng Station to investigate the effects of canopy size and development on crop growth and radiation use efficiency (RUE) of winter wheat during 2009/2010 and 2010/2011 gr...

متن کامل

Effect of Co-Application of Auxin-Producing Plant Growth Promoting Bacteria and Tryptophan on Wheat Growth under Water Stress Conditions

Auxin produced by plant growth-promoting bacteria (PGPR) in the wheat rhizosphere, can improve plant yield under water deficit stress condition. To investigate this issue, a completely randomized factorial design with three replications was conducted under greenhouse condition at the University of Maragheh, Eastern-Azarbayjan, Iran during 2019. Treatments were two types of growth-promoting bact...

متن کامل

تأثیر سلنیم بر عملکرد وزن خشک، فعالیت آنزیم گلوتاتیون پراکسیداز و غلظت برخی عناصر کم‌مصرف در گندم در شرایط شور

Selenium (Se) is a beneficial element for plant but at high concentrations, it is toxic and causes in plant growth retardation. There is limited information about the effects of Se on salinity-induced damages on wheat. Therefore this study was carried out to investigate interaction of salinity and Se on root and shoot dry matter yield, activity of GPX, and concentrations and uptake of selected ...

متن کامل

The impact of atmospheric temperature and soil nitrogen on some physiological traits and dry matter accumulation of wheat (Triticum aestivum cv. Bahar)

Wheat is the most important cereal crop in the world as well as in Iran. The studies related to the effects of global climate change on wheat production usually assess the impact of changes in atmospheric CO2 concentration and temperature on growth and yield. On the other hand, nitrogen is the most crucial plant nutrient for crop production and the proper management and improving the utilizatio...

متن کامل

The Effect of Delayed Sowing and Application of Phosphate Solubilizing Bacteria on Dry Matter Accumulation and Remobilization in Bread Wheat Cultivars

In order to evaluate the ability of wheat cultivars to accumulate reserves in the stem and remobilization of these reserves to seeds under heat stress resulting from delayed sowing and to investigate the effect of phosphate-solubilizing bacteria on this ability, this study was carried out as split factorial based on a complete randomized block design with three replications in Haftkol, Khuzesta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016